首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   19篇
综合类   2篇
基础理论   86篇
  2023年   6篇
  2022年   1篇
  2021年   12篇
  2020年   6篇
  2019年   6篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   4篇
  2014年   10篇
  2013年   2篇
  2012年   2篇
  2011年   12篇
  2010年   9篇
  2009年   2篇
  2003年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   
2.
Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red‐tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution‐risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high‐risk poles for retrofitting. Modelo Predictivo del Riesgo de Electrocución de Aves en Líneas Eléctricas Elevadas  相似文献   
3.
Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present‐day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low‐lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies.  相似文献   
4.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
5.
As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale‐dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2‐phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low‐density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long‐term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship of human encroachment and biodiversity response. Patrones Sistemáticos Temporales en la Relación entre Desarrollos Urbanos y la Biodiversidad de Aves de Bosque  相似文献   
6.
Eradication of introduced mammalian predators from islands has become increasingly common, with over 800 successful projects around the world. Historically, introduced predators extirpated or reduced the size of many seabird populations, changing the dynamics of entire island ecosystems. Although the primary outcome of many eradication projects is the restoration of affected seabird populations, natural population responses are rarely documented and mechanisms are poorly understood. We used a generic model of seabird colony growth to identify key predictor variables relevant to recovery or recolonization. We used generalized linear mixed models to test the importance of these variables in driving seabird population responses after predator eradication on islands around New Zealand. The most influential variable affecting recolonization of seabirds around New Zealand was the distance to a source population, with few cases of recolonization without a source population ≤25 km away. Colony growth was most affected by metapopulation status; there was little colony growth in species with a declining status. These characteristics may facilitate the prioritization of newly predator‐free islands for active management. Although we found some evidence documenting natural recovery, generally this topic was understudied. Our results suggest that in order to guide management strategies, more effort should be allocated to monitoring wildlife response after eradication. Conductores de la Recuperación de Poblaciones de Aves Marinas en Islas de Nueva Zelanda después de la Erradicación de Depredadores  相似文献   
7.
Biodiversity offsets aim to counterbalance the residual impacts of development on species and ecosystems. Guidance documents explicitly recommend that biodiversity offset actions be located close to the location of impact because of higher potential for similar ecological conditions, but allowing greater spatial flexibility has been proposed. We examined the circumstances under which offsets distant from the impact location could be more likely to achieve no net loss or provide better ecological outcomes than offsets close to the impact area. We applied a graphical model for migratory shorebirds in the East Asian–Australasian Flyway as a case study to explore the problems that arise when incorporating spatial flexibility into offset planning. Spatially flexible offsets may alleviate impacts more effectively than local offsets; however, the risks involved can be substantial. For our case study, there were inadequate data to make robust conclusions about the effectiveness and equivalence of distant habitat-based offsets for migratory shorebirds. Decisions around offset placement should be driven by the potential to achieve equivalent ecological outcomes; however, when considering more distant offsets, there is a need to evaluate the likely increased risks alongside the potential benefits. Although spatially flexible offsets have the potential to provide more cost-effective biodiversity outcomes and more cobenefits, our case study showed the difficulty of demonstrating these benefits in practice and the potential risks that need to be considered to ensure effective offset placement.  相似文献   
8.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   
9.
乌梁素海湿地鸟类栖息地生态服务功能评估探讨   总被引:1,自引:0,他引:1  
本文通过收集近30年鸟类种类及种群数据变化的资料,分析乌粱素海不同鸟类栖息环境的栖息地服务功能,从而评估鸟梁素海湿地鸟类栖息地的综合生态服务功能。评估结果表明:乌梁素海湿地鸟类栖息地综合生态服务功能为不好。  相似文献   
10.
Abstract: One potential contributor to the worldwide decline of bird populations is the increasing prevalence of roads, which have several negative effects on birds and other vertebrates. We synthesized the results of studies and reviews that explore the effects of roads on birds with an emphasis on paved roads. The well‐known direct effects of roads on birds include habitat loss and fragmentation, vehicle‐caused mortality, pollution, and poisoning. Nevertheless, indirect effects may exert a greater influence on bird populations. These effects include noise, artificial light, barriers to movement, and edges associated with roads. Moreover, indirect and direct effects may act synergistically to cause decreases in population density and species richness. Of the many effects of roads, it appears that road mortality and traffic noise may have the most substantial effects on birds relative to other effects and taxonomic groups. Potential measures for mitigating the detrimental effects of roads include noise‐reduction strategies and changes to roadway lighting and vegetation and traffic flow. Road networks and traffic volumes are projected to increase in many countries around the world. Increasing habitat loss and fragmentation and predicted species distribution shifts due to climate change are likely to compound the overall effects of roads on birds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号